Расчёты которые подтверждают работоспособность конструкции
Коэффициент преобразования при приеме – отношение амплитуд возбуждаемых на входе усилителя прибора электрических колебаний к акустическим колебаниям принимаемой волны:
P и F – акустическое давление или компонента тензора напряжения;
U и U’ – электрические напряжения.
Разработка и расчет схемы включения измерительного преобразователя
Рисунок 1- Блок- схема импульсного ультразвукового дефектоскопа
1- импульсный генератор;
2- излучающая пластина;
3- ультразвуковые колебания;
4- исследуемое изделие;
![]() |
5- усилитель;
6- следящее устройство, двигающее электронный луч;
7- электронно-лучевая трубка;
8- начальный импульс;
9- приемная пластина;
10- данный импульс;
11- дефект;
12- импульс дефекта;
13- блок питания.
От импульсного генератора 1 на пластину 2 подаются кратковременные импульсы переменного напряжения. В пластине возбуждаются колебания ультразвуковой частоты 3, которые передаются в исследуемое изделие, Такой же импульс подается на усилитель 5, и на следящее устройство 6, заставляющее электронный луч в электронно-лучевой трубке 7 передвигаться слева направо по горизонтали, Луч прочерчивает светящуюся линию, появляется светящийся всплеск 8-начальный импульс. При отсутствии дефекта в изделии ультразвуковой пучок 3 пройдет до противоположной поверхности, отразится от нее, попадет на приемную пластину 9, заставляя ее колебаться. На пластинке 9 возникает разность потенциалов, которая усиливается; сигнал поступает на электронно-лучевую трубку, на правой стороне экрана появится всплеск, называемый данным импульсом 10 (отраженный от дна изделия).
Если есть дефект, то пучок отразится от него раньше, чем от дна и раньше попадет на приемную пластинку и на экране появится импульс 12, указывающий на дефект, По расстоянию между импульсами можно определить глубину залегания дефекта.
![]() |
Длительность зондирующего импульса с учетом лучевой разрешающей способности, которая должна быть не хуже двойного минимального размера дефекта, составляет:
Рисунок 2. - Генератор зондирующих импульсов.
Конденсатор C заряжается через резистор R0.Постоянная заряда должна быть по крайней мере в три раза периода зондирования. От величины Е зависит энергия зондирующего импульса.
Наиболее оптимальная величина ёмкости зарядного конденсатора 10-100нФ.
Тогда :
С*R0=0.33T
С учетом возможного увеличения частоты зондирования величину резистора можно выбрать в пределах 100 кОм. Принимаем R2=100 кОм. Разряд конденсатора С осуществляется через включенный теристор VD5 контур преобразователя. Время разряда не должно превышать половину периода рабочей частоты , т.е.
Преобразователь (рис.3) включает в себя пьезоэлемент 6, демпфер 3,призму 5 с протектором 4,которые собираются в корпусе. Электрическае соединения подводятся через разъём 2.
![]() |
Рис.3. Схема конструкции преобразователя.
Поляризованый преобразователь приклеивается к демпферу с одной стороны и к призме с другой стороны. К призме со стороны объекта приклеивается протектор. Призма с протекторами вставляется в стальной корпус цилиндрической формы и
приклеивается по торцу протекторами к корпусу. Затем через верхнее отверстие в корпус заливается затвердевающий состав на базе эпоксидной смолы. Перед заливкой через верхнее отверстие в корпусе электрические провода от электродов пьезоэлемента. Окончательная заливка, закрепляющая провода в корпусе, осуществляется в последнюю очередь.
Другие статьи по теме
Статистическая обработка экспериментальных данных
Измерения — один из
важнейших путей познания природы человеком. Они играют огромную роль в
современном обществе. Наука и промышленность не могут существовать без
измерений. Практически нет ни одной сферы деятельности человека, гд ...
Полиграф использование и перспективы развития метода
Ситуация, исторически сложившаяся вокруг полиграфов,
довольно парадоксальна. Результаты проверки этим прибором не всегда принимаются
в качестве доказательства в суде, степень научности метода подвергнута
серьезнейшей критике в ак ...